
Detecting Packet Injection
a guide to observing packet spoofing by ISPs

By Seth Schoen

schoen@eff.org

ELECTRONIC FRONTIER FOUNDATION
eff.org

�ELECTRONIC FRONTIER FOUNDATION EFF.ORG

Version 1.0 November 28, 2007

Detecting Packet Injection:
A Guide To Observing Packet Spoofing by ISPs
Introduction

Certain Internet service providers have begun to interfere with their users’ communications by
injecting forged or spoofed packets – data that appears to come from the other end but was
actually generated by an Internet service provider (ISP) in the middle. This spoofing is one
means (although not the only means) of blocking, jamming, or degrading users’ ability to use
particular applications, services, or protocols. One important means of holding ISPs account-
able for this interference is the ability of some subscribers to detect and document it reliably.
We have to learn what ISPs are doing before we can try to do something about it. Internet
users can often detect interference by comparing data sent at one end with data received at the
other end of a connection.

Techniques like these were used by EFF and the Associated Press to produce clear evidence
that Comcast was deliberately interfering with file sharing applications; they have also been
used to document censorship by the Great Firewall of China.1 In each of these cases, an in-
termediary was caught injecting TCP reset packets that caused a communication to hang up
– even though the communicating parties actually wanted to continue talking to one another.
In this document, we describe how to use a network analyzer like Wireshark to run an experi-
ment with a friend and detect behavior like this. Please note that these instructions are
intended for use by technically experienced individuals who are generally familiar with
Internet concepts and are comfortable installing software, examining and modifying their
computers’ administrative settings, and running programs on a command line.

Requirements

Making use of these techniques requires some general understanding of Internet technology
and some technical expertise. If you don’t understand the process, you may not produce mean-
ingful evidence about what your ISP is doing. Although we have attempted to explain most
of the network concepts and principles involved, it may prove helpful to have read at least one
technical book or web site about the TCP/IP protocol suite before beginning.

The test described here must be performed in conjunction with a friend who is using a differ-
ent Internet connection (and therefore is probably in a different location). Both you and your
friend must have a good understanding of the process described here; this test relies on com-
paring observations made at two different locations in order to find differences between them,
so it would not be meaningful if performed by one party alone. Therefore, these instructions
are primarily useful for testing peer-to-peer applications or applications for which you can run

1 	 See Clayton, Murdoch, and Watson, “Ignoring the Great Firewall of China” (available at http://www.cl.cam.
ac.uk/~rnc1/ignoring.pdf).

2	 If your ISP were blocking Google, you might suspect this when you encountered difficulty connecting to
Google’s services – and you might see apparently anomalous packets in a packet trace from your end. However,
only the addition of a recording of the same interaction from Google’s end would definitively establish whether
the problem lay with Google or with an ISP in between. Otherwise, it is difficult to tell whether the problem
is a result of ordinary packet loss, a misbehaving computer at Google’s end, or even misbehaving software on
your own computer.

http://www.cl.cam.ac.uk/~rnc1/ignoring.pdf
http://www.cl.cam.ac.uk/~rnc1/ignoring.pdf

�ELECTRONIC FRONTIER FOUNDATION EFF.ORG

your own server. It is therefore difficult to confirm if an ISP is blocking a third-party service
like Google unless the operator of that service is interested in participating directly in the tests.2

The tests described here are most relevant as a means of debugging a specific observed and
reproducible problem (for example, an inability to connect to another party) rather than as a
speculative means of investigating ISP behavior. This is primarily because of the limitations of
tools to automate the process of comparing packet traces from two ends of a connection. Tra-
ditionally, this comparison had to be performed by hand, which can be a quite laborious pro-
cess if one isn’t looking for anything in particular. EFF has begun to develop tools to automate
this process so that large packet traces can be compared automatically and packet injection can
be detected even when it is not specifically suspected.

Each party participating in the experiment must have all of the following:

•	 a computer capable of running Wireshark, with appropriate privileges to install and
run it;

•	 the ability to connect this computer directly to the Internet, with a public IP address,
outside of any firewalls (for example, not via a typical home wireless router);

•	 the ability to determine the computer’s public IP address;

•	 the ability to disable any firewall software running on the computer itself;

•	 some application to test, and the ability to configure that application to communicate
directly with the other party (by IP address).

A note on privacy

Using a packet sniffer can capture all of the traffic passing by your computer (including all of
your communications, and potentially communications of other users on the same network);
if your computer is connected to a wireless network, for example, the packet sniffer may record
everything you do and everything everyone else on the wireless network does on-line. Please
do not record other people’s communications without their consent. Doing so is impolite and,
under some circumstances, may be prohibited by law. One way to avoid recording third parties’

	 We urge readers to interpret the results of their tests cautiously and avoid jumping to conclusions or making
spurious accusations. For example, RST packets are a legitimate part of the TCP protocol, and receiving RST
packets does not normally mean that they were spoofed by an intermediary. RST packet spoofing can only
be proven definitively by making simultaneous measurements at the endpoints of a connection. (Some forms
of packet spoofing could produce suggestive evidence at one end because the spoofed packets have anomalous
properties that make it very unlikely that they were really transmitted by the other end. But observing these
anomalies will probably not be truly conclusive unless evidence is also gathered at the other end.)

	 It would clearly be useful to have a reliable automated means of testing non-P2P services to detect interference
or degradation by ISPs. In some cases this would just be a matter of writing software, while in other cases it
would require co-ordination among multiple parties (such as Google in the example just given). For example, it
would be helpful to know whether ISPs give users lower-latency connections to some web sites than to others.
Because the web site operators’ co-operation is required for this test, it is beyond the scope of this article. One
test that could be performed readily by two end-users is seeing whether exchanging the same volume of data with
different protocols (for example, sending a single 1-megabyte file with HTTP, FTP, BitTorrent, Gnutella, and
disguised as a SIP VoIP telephone call data stream) takes appreciably different amounts of time, and whether the
round-trip latency for each of these protocols is the same or not. This article does not discuss tools that would
help automate such a test. We do discuss our pcapdiff tool below and also mention the University of Washing-
ton research project using JavaScript to detect some modification of web page contents by ISPs.

�ELECTRONIC FRONTIER FOUNDATION EFF.ORG

communications is to avoid using promiscuous mode for your packet capture, unless you specifi-
cally need it.

If you produce a capture file (packet trace) with evidence of the results of your experiment,
please be aware that the capture file will reveal your IP address, the IP address of the other per-
son involved, and a complete record of everything you did on-line during the course of the ex-
periment. For example, if you downloaded a file, the packet trace will typically reveal which file
(and even include the full contents of that file). If you browsed the web or checked your e-mail
while the packet sniffer was running, the identities and contents of web pages you visited and e-
mail messages you downloaded may appear in the packet trace. In addition, any HTTP cook-
ies sent by your browser (which might include your username and password for web sites you
visited!) will be included in the trace. You should exercise caution when publishing or sharing a
packet capture file to ensure that you don’t reveal more information than you intended.

Theory

The traditional Internet architecture is characterized by an end-to-end design in which ISPs
passively forward unmodified packets from one user to another. This means that, in the best
case, every packet sent by one user should be received as an identical packet at the other end.
There are several reasons that this ideal might not be attained even in the absence of packet
injection by ISPs:

•	 Fragmentation The Internet Protocol standard per-
mits ISPs to fragment packets that are too large (for
example, because a particular network technology
used by an ISP has a maximum packet size). The
packets are then broken up into smaller fragments
which arrive separately at the destination; the desti-
nation computer is responsible for reassembling the
fragments. Fragmentation has become somewhat
less common in practice for reasons that may include
conservative packet size defaults in operating sys-
tem network code and mechanisms like path MTU
discovery (to automatically select a packet size that
is small enough to avoid fragmentation). In test results we’ve seen so far, fragmentation
generally did not occur, and we will ignore this possibility here, although it should be
considered as a possible cause of any observed discrepancies between packets sent and
received.

•	 Packet loss. Under conditions of network conges-
tion, it is normal for some packets to be discarded
rather than forwarded, a phenomenon called packet
loss. Packet loss is normally measured as a percent-
age; the ping utility measures packet loss with ICMP
echo request packets, counting how many ICMP echo
replies are received in response to a certain number
of probes. High rates of packet loss could be caused
intentionally by an ISP as a means of reducing the
performance of a targeted application or protocol,
but they can also occur as a result of congestion on

ISP
Networks

ISP
Networks

�ELECTRONIC FRONTIER FOUNDATION EFF.ORG

the network or other technical problems. When a packet is lost (also called a “dropped
packet”, “dropped frame”, or “dropped segment”), it is not received by the destination at
all. Some higher-level Internet protocols include mechanisms for coping with packet
loss, such as TCP’s mechanism for explicitly retransmitting data from packets that are
lost.

•	 Reordering. Sometimes packets are not delivered
in the same order in which they were originally
transmitted. If packet B was transmitted after
packet A, receiving packet B at the other end
does not mean that packet A has been dropped;
it might still be on its way. TCP can also gener-
ally correct for reordering. Like packet loss, reor-
dering could be used intentionally by an ISP to
degrade an application, but also occurs normally
in the course of Internet routing. Therefore, ob-
serving reordering does not necessarily indicate a
problem or anomaly.

•	 Spoofing. Spoofing or packet injection occurs
when an entity other than one of the endpoints
generates traffic using the source address of an
endpoint. Spoofing is the most straightfor-
wardly detectable means of interference with
Internet traffic because it produces concrete
evidence in the form of the anomalous spoofed
packets, and because it does not occur normally
in traditional Internet routing.

Spoofing can be detected by looking for packets that
were received by one end but never sent by the other
end. If user B receives a packet apparently from user A
that user A has no record of having sent, user B can conclude that someone in between the two
has spoofed this packet. The remainder of this article describes the means of collecting packet
traces to allow the packets actually transmitted between two users to be compared in this way.

Spoofing need not involve preventing or blocking communications; it could also involve changing
their content, as with a transparent proxy.3 Some ISPs have been experimenting with modify-
ing HTML in third-party web pages on the fly in order to inject advertising. Here is a recent
real-world example:

ISP
Networks

ISP
Networks

3	 One Internet user configured his open wireless gateway to modify images seen by users as they browsed the
web, either by mirror-reversing them or blurring them. See http://www.ex-parrot.com/~pete/upside-down-
ternet.html. It can be easy to forget that Internet intermediaries are able to make arbitrary changes to their
users’ view of the Internet.

http://www.ex-parrot.com/~pete/upside-down-ternet.html
http://www.ex-parrot.com/~pete/upside-down-ternet.html

�ELECTRONIC FRONTIER FOUNDATION EFF.ORG

In this image supplied by Chris Palmer, a wireless ISP has modified the source code of Google’s
home page to add its own advertising, presumably by spoofing packets with a transparent
HTTP proxy. Although similar behavior often results from adware, in this instance Palmer
verified that the ISP was at fault by installing a fresh instance of Windows inside a virtual
machine. 4

Setup

Step 1. Install Wireshark

Download a copy of Wireshark for your platform from the Wireshark home page at http://
www.wireshark.org/. (Wireshark is also prepackaged for most Unix-like operating systems
and may be available from your distributor’s package repository. In older operating system
releases, it may still be packaged under its former name, Ethereal.) Install Wireshark and make
sure that you can run the program. 5

4	 This particular advertising appears to have been added by AnchorFree, one of several firms experimenting with
this means of ad placement; see http://anchorfree.com/advertisers-agencies/how-it-works/. See also http://
vancouver.cs.washington.edu/ for a research project investigating the prevalence of this phenomenon.

5	 If you’re running Wireshark on the same machine that’s generating or receiving the test traffic, as we
recommend here, you don’t need to follow the additional directions at http://www.wireshark.org/faq.
html#promiscsniff because you won’t need to capture traffic in promiscuous mode. Running Wireshark in
promiscuous mode on a different machine on the same local area network segment (note: not on an Ethernet
switch) could, however, help mitigate problems with excessive CPU load, with the unavailability of Wireshark
or a suitable packet capture driver for a particular operating system or device, with TCP or UDP checksum
offloading or large segment offloading (described below), or when logging into a remote server by means such
as SSH in order to run tests on that server’s communications with your client machine. In this scenario, the

http://www.wireshark.org/
http://www.wireshark.org/
http://anchorfree.com/advertisers-agencies/how-it-works/
http://vancouver.cs.washington.edu/
http://vancouver.cs.washington.edu/
http://www.wireshark.org/faq.html#promiscsniff
http://www.wireshark.org/faq.html#promiscsniff

�ELECTRONIC FRONTIER FOUNDATION EFF.ORG

Step 2. Connect directly to the Internet

In order to obtain the most valid and conclusive results, we strongly recommend that your com-
puter be directly connected to the Internet, with a globally-valid public IP address, without any
firewalls or network address translation (NAT) routers. Performing these tests from behind
NAT could produce valid results but creates some uncertainty about whether unexpected
network behavior is due to an ISP or a local NAT router. A public IP address is one that an-
other party can use directly to communicate with you without the need to configure a tunnel or
firewall rule or use a proxy to connect. 6

If you are using an institutional network connection, such as at a school or business, that has a
firewall that you are not permitted to disable, you may still be able to perform these tests, but
any packet spoofing you detect may be a result of your institution’s firewall rather than its up-
stream ISP connection. As we describe below, observing packet spoofing shows that someone
is doing it, but does not directly reveal who. We want to reduce the number of possible respon-
sible parties.

Therefore, before beginning the test, disable any firewalls and NATs located between your
computer and the Internet – including both software or “personal” firewalls running on your
computer and firewall appliances or firewall functionality in routers. As an alternative, connect
your computer to a point on the network located outside of any firewalls or NAT routers (for
example, by directly connecting it to a cable modem or DSL modem). Some network designs
and documentation refer to this location as a DMZ.

Step 3. If possible, disable TCP and UDP checksum offloading and TCP segmentation offloading

Checksum offloading (sometimes called “TCP checksum offloading”, although UDP check-
sums may also be offloaded) is a feature of some recent Ethernet cards, particularly Gigabit
Ethernet-capable cards, that allows the Ethernet card to construct portions of some network
packets in hardware, saving load on the CPU. However, the use of checksum offloading makes
packet captures inaccurate because it prevents the local operating system from seeing what was
actually transmitted. This may cause a discrepancy since one end mistakenly thinks it sent
something slightly different from what the other end correctly received; the resulting mismatch
of TCP or UDP checksum values could be misinterpreted as tampering by an ISP, since ISPs
are not supposed to alter these checksums. Checksum offloading should, if possible, be dis-
abled at both ends before beginning the experiment. If you know that your Ethernet card or
network driver does not perform checksum offloading, you do not need to disable it. It may
also be possible to get valid results when checksum offloading is enabled; workarounds for this

machine capturing packets is not the same machine that generates them; however, the resulting packet trace can
generally be used in the same way as a packet trace that was captured directly on the machine generating the
packets, as long as the LAN to which the machines are connected broadcasts all packets to the packet-captur-
ing machine. There are also techniques for sniffing traffic on some non-broadcast switched LANs, which are
beyond the scope of this document.

	 Running Wireshark on MacOS X requires X11; there are other pcap-compatible native packet sniffers for
MacOS X.

6 	 NAT devices and firewalls create uncertainty because they routinely rewrite, drop, or block traffic; if they are
not disabled, it will be difficult to prove that communications that blocked or altered packets were blocked
or altered by an ISP rather than by a firewall device. NATs and proxies also prevent direct packet-by-packet
comparison of packet traces because the end points do not have a consistent view of the source and destination
addresses in use, and there may not even be a one-to-one relationship between packets entering and exiting a
NAT or proxy. Evidence of third-party packet tampering gathered in the presence of any of these devices is
better than no evidence, but must be interpreted with extreme caution.

�ELECTRONIC FRONTIER FOUNDATION EFF.ORG

purpose are described in a later section. Here are typical means of disabling checksum offload-
ing on several popular operating systems:

On Linux (as root):

ethtool -K eth0 rx off tx off (choose correct network interface if not eth0)

On FreeBSD (as root):

ifconfig em0 -rcxsum -tcxsum (choose correct network interface if not em0)

On MacOS (as root):

sysctl -w net.link.ether.inet.apple_hwcksum_tx=0

sysctl -w net.link.ether.inet.apple_hwcksum_rx=0

(Note that this may cause some local applications to work incorrectly!)

On Windows: right-click My Computer, then select Device Manager / Network Adapters /
(select device) / Properties / Advanced; then disable checksum offloading, if the option is avail-
able.

For general information about checksum offloading and why it can cause errors when captur-
ing packets, see http://www.wireshark.org/docs/wsug_html_chunked/ChAdvChecksums.
html and http://www.wireshark.org/faq.html#q11.1. Note that the approach suggested there
of disabling TCP checksum verification in Wireshark does not help for our purposes, because
we want to compare packets; having TCP checksums that are different across capture files will
still appear as a discrepancy between those capture files even if the checksums’ values are never
verified.

If your system performs checksum offloading and you are unable to disable it, other options are
available. The pcapdiff program described below allows you to ignore TCP and UDP check-
sum values entirely, in case you have reason to believe that checksum offloading is in use. You
can also perform the capture on a separate machine distinct from the computer that is generat-
ing the test traffic – as long as it is connected to the same local area network and is able to see
the traffic passing by. In this case, the capture should be performed in promiscuous mode (see
footnote 3 above) and, on a network used by multiple people, extra care should be taken to
avoid capturing other users’ communications without their knowledge.

Another form of offloading that can cause packet capture accuracy problems is TCP segmenta-
tion offloading, also known as large segment offload. In TCP segmentation offloading, an Ether-
net card, rather than operating system software, splits a large TCP packet into multiple TCP
packets. This can cause a serious discrepancy in the number of packets a host believes it trans-
mitted as against the number of packets it actually transmitted; since packets are split up by the
network card in a way invisible to the sender’s operating system, every TCP packet large enough
to be split may appear to be “forged”, since the sender will have no record of having sent any
of the received packets in the form in which they were received. TCP segmentation offload-
ing should also be disabled if your system uses it. pcapdiff, for example, is not able to ignore
TCP segmentation discrepancies in the same way that it can ignore TCP and UDP checksum
mismatches. See http://www.inliniac.net/blog/2007/04/20/snort_inline and tcp segmenta-
tion offloading.html for a discussion of TCP segmentation offloading’s consequences for packet
sniffing, and information about disabling it on Linux. In general, the validity of the results of
packet capture experiments will be improved by disabling all available offloading features.

http://www.wireshark.org/docs/wsug_html_chunked/ChAdvChecksums.html
http://www.wireshark.org/faq.html#q11.1
http://www.inliniac.net/blog/2007/04/20/snort_inline and tcp segmentation offloading.html
http://www.inliniac.net/blog/2007/04/20/snort_inline and tcp segmentation offloading.html

�ELECTRONIC FRONTIER FOUNDATION EFF.ORG

Step 4. Determine local IP address

Next, determine the IP address of your computer. You can obtain this locally from your com-
puter’s network configuration tools, and you can also obtain it from a web site such as http://
whatismyipaddress.com/ or http://www.whatismyip.com/, which displays the IP address from
which it is being accessed. Use both methods to ensure that you are really directly connected to
the Internet and not using a proxy server or NAT connection. (If you are not using NAT, your
computer’s locally-configured IP address should be identical to the IP address seen by web
sites and other Internet users. If they still disagree, it’s possible that your ISP or institutional
network is forcing all users to use NAT or a proxy, rather than providing direct access to the
Internet.)

From here on, we will suppose that your IP address is 12.13.14.15 and that the IP address of
the person at the other end is 4.8.16.32. You should replace these example addresses with the
real IP addresses involved. 7

Step 5. Confirm IP addresses and test connectivity

To ensure that both you and the person at the other end have correctly determined your IP
addresses, try to perform some operation that allows you to communicate with one another
by specifying each other’s IP addresses. You could use the ping command or try the applica-
tion that you eventually plan to test out, such as a P2P file-sharing client or VoIP application.
If you can’t establish some kind of end-to-end communication using the IP addresses you’ve
determined, you’ll need to debug this problem before proceeding any further. Possible causes
could include the presence of a firewall, including a software firewall, that has not yet been
disabled at one end.

Step 6. Synchronize computer clocks

If your operating system supports it, make sure that your computer’s clock is synchronized to
an authoritative Network Time Protocol (NTP) network time server, so that the dates and
times recorded in your packet capture will be accurate and will correspond to those recorded by
the other computer. This will help make results or log entries from multiple computers easier
to compare.

Running the test

Start Wireshark (with administrative privileges, e.g. root privileges, sufficient to perform a
raw packet capture8). Select “Interfaces” from the “Capture” menu. Choose the interface cor-
responding to the network device you will use to capture packets; the IP addresses bound to
all available network interfaces are displayed, which may help you distinguish them if you are
unsure which network interface is which. Click the Options button for the correct interface.

In the Capture Options dialogue, ensure that the IP address you expected your computer to be
using is displayed in the “IP address” field. We recommend setting a capture filter to ensure that only
packets directly to or from the other computer will be captured. If the other computer’s IP ad-

7 	 Note that if your IP address appears to be in a private address range defined by RFC 1918 (10.0.0.0
– 10.255.255.255, 172.16.0.0 – 172.31.255.255, or 192.168.0.0 – 192.168.255.255), you have not properly
followed the instructions to disable any firewalls and NAT devices (or your ISP is forcing everyone to use its
own ISP-operated NAT service).

8	 Windows users may also be able to use the NPF driver to perform a packet capture as an unprivileged user.

http://whatismyipaddress.com/
http://whatismyipaddress.com/
http://www.whatismyip.com/

�ELECTRONIC FRONTIER FOUNDATION EFF.ORG

dress is 4.8.16.32, a suitable capture filter
string is host 4.8.16.32. We also
recommend setting “Update list of packets
in real time” and “Automatic scrolling in live
capture”, which help you watch the capture
process while it’s underway, unless your
computer is too slow.

When you’re ready to begin capturing
packets, click the Start button. If you’ve
set a capture filter to limit capturing to
traffic to or from the other computer, you
will probably not see any packets appear in
the capture until you deliberately generate
some traffic between the two computers.
To ensure that the traffic is showing up,
you should ensure that Wireshark packet
captures are running at both ends, and
then have one computer ping the other
computer by IP address. This generates
a steady stream of ICMP echo request and echo reply packets. Current Unix, Windows, and
MacOS operating systems all allow you to start the ping process by typing ping 4.8.16.32 at a
terminal (command-line) prompt. (On some systems, the ping will stop automatically after a
predetermined number of pings; on others, you can interrupt it by pressing Ctrl+C.)

If both ends of the connection are capturing data, the ICMP packets that represent ping re-
quests and replies should appear in the Wireshark window at each end. These packets should
be identical at the IP layer and – unless the ping utility itself reported packet loss – there
should be an identical number of packets seen from both ends. This test will show if the cap-
ture process is set up and working properly.

10ELECTRONIC FRONTIER FOUNDATION EFF.ORG

Here, we see how the capture process appears at both ends following a large number of ping
requests from 12.13.14.15 to 4.8.16.32. The packets displayed agree one-to-one (as could be
verified by looking more closely at the packets’ contents than we do here); there are no dropped
packets and no spoofed packets. (Note that you can’t see this view from both ends in real-time;
this screen shot was created after the fact by copying a saved capture file from one computer
onto another. While the capture is running, each party sees only one of the two windows
displayed here; in order to verify that the packet captures correspond properly while they’re
in progress, you’ll need to use some other means of communication to talk to the person at
the other end, such as a telephone or instant messaging application. You’ll use this channel to
coordinate your activities and to compare notes.)

Once you’re confident that both computers are talking to each other over the Internet correctly
and are saving a valid packet trace, you can begin to gather experimental data about whatever
application is of interest to you – or try to reproduce any reported or conjectured errors or
problems. For example, for our tests with Comcast, we configured one of the computers as a
BitTorrent tracker and seeder and gave the other computer a BitTorrent file instructing it to at-
tempt to download the file hosted by the first computer. The details of what you’ll test depend
on what you’re interested in and will require you to be familiar with the application you’re
testing in some detail. (In the BitTorrent example, it’s not sufficient simply to have both parties
start running BitTorrent at this point; rather, one computer needs to be configured explicitly
to offer a download to the other computer, which, in turn, needs to be configured to request a
download from that computer.)

When your experiment is complete, you should stop the capture and save the resulting capture
files to disk. You can then exchange these files with the person at the other end – by e-mail, for
instance. Wireshark can be used to open and display a saved capture file generated on another
computer.

There are many other network analyzers or packet sniffers that could be used instead of Wire-
shark. We have chosen to describe Wireshark because it is powerful, user friendly, open source,
and available for several platforms. As long as the network analyzer you use can save its packet
traces in pcap format, they can be read by a wide variety of software, including Wireshark; thus,
meaningful and comparable results could be obtained using other software. If you’re capturing
packets on a device that can’t run Wireshark – such as a remotely-accessible server in a colo-
cation facility with no graphical user interface – you should consider the tcpdump program,
which is a standard part of many Unix-like operating systems and is available at http://www.
tcpdump.org/.

http://www.tcpdump.org/
http://www.tcpdump.org/

11ELECTRONIC FRONTIER FOUNDATION EFF.ORG

It is important to be aware that some network analyzers default to capturing only a portion of
each packet. Wireshark’s option to “Limit each packet to 68 bytes” in the screen capture above
is (correctly) disabled by default, but the corresponding option in some other programs could
be (wrongly) enabled by default. To meaningfully compare the resulting packet traces, the
packet size limit should be set to the largest possible value (usually 65535 bytes) or disabled
entirely. For example, using the tcpdump utility, an appropriate command line would be

tcpdump -v -s 0 -w packet_trace.pcap

Setting -s 0 sets the packet size limit to “unlimited” instead of tcpdump’s default of 68 bytes.
(When running tcpdump on a computer with multiple network interfaces, it may also be nec-
essary to specify a network interface with the -i option.)

Interpreting the results

Packet trace comparison

As we described above, packet trace files generated on separate machines that were communi-
cating directly with one another can be compared to see how packets sent by each computer
correspond to packets received by the other computer. Since a simple file transfer or VoIP
conversation could generate thousands of packets, the lack of automated tools to perform this
comparison can make the process tedious. We intend to collaborate with other interested par-
ties to produce such comparison tools in the near future, enabling much larger data sets to be
analyzed quickly for spoofed packets, even where specific sorts of spoofing are not suspected.
Here are a few tips for comparing packet traces by hand:

•	 Spoofed packets may correspond to protocol errors or extreme delays reported or
observed in application software; for example, if a client program gives an error like
“Connection reset by peer”, “Connection closed by foreign host”, “Lost connection”, etc.,
or data rates suddenly drop, packet spoofing may have occurred. Noting the timing
of suspicious errors may provide guidance for where to look for spoofed packets in a
packet trace file.

•	 Spoofed packets used to disrupt connections are often TCP segments with the FIN
or RST flags set (also known as “FIN packets” and “RST packets”); each of these flags
indicates that a computer does not want to continue a TCP conversation. Wireshark
can be configured to color these packets differently so that they stand out in a packet
display. Keep in mind that there are legitimate uses for FIN and RST packets within
the TCP standards and that the presence of forged FIN or RST packets, not the

12ELECTRONIC FRONTIER FOUNDATION EFF.ORG

presence of such packets generally, is suspicious. (A client software or firewall bug, for
example, could cause one end of a connection to disconnect prematurely – but that isn’t
the ISP’s fault!)

•	 If a problem you’re investigating is widespread, someone may already have published
claims about precisely when or under what circumstances spoofed packets may appear;
you can consult the details of other people’s allegations to see whether you can repro-
duce these claims for yourself.

Setting aside the possibility of fragmentation, we have explained that packets are spoofed when
they are received by one computer but were not transmitted by the other computer. Below, we
give examples of summary views showing a BitTorrent transfer disrupted by TCP RST spoofing:

13ELECTRONIC FRONTIER FOUNDATION EFF.ORG

Before the RST packets begin (packet no. 2338 in the local capture and packet no. 2549 in the
remote capture9), the packets transmitted and received correspond directly to one another (al-
though they appear in rather different orders). 10 Once the RST packets begin, a large number
of packets are received at each end that do not correspond to packets transmitted at the other
end. We can verify this by looking at the detailed contents of these packets (for example, their
sequence numbers, which are displayed by Wireshark as Seq=nnnnn), although simply count-
ing them tells the tale in this case. The local machine, with IP address 12.13.14.15, reported
transmitting a total of five RST packets to the remote machine at 4.8.16.32 (packet nos. 2340,
2342, 2346, 2350, and 2354), while it reported receiving 13 such packets from 4.8.16.32
(packet nos. 2338, 2339, 2343, 2344, 2347, 2348, 2351, 2352, 2355, 2356, 2357, 2358, and
2359). The remote machine, with IP address 4.8.16.32, reported transmitting only a single
RST packet (packet no. 2560) while it believes it received 17 RST packets from 12.13.14.15
(2549, 2550, 2551, 2552, 2553, 2554, 2555, 2556, 2557, 2558, 2561, 2562, 2563, 2564, 2565,

9	 In this context, “packet number” refers to the ordinal number of the packet within a particular capture file,
which is displayed by Wireshark in the left-hand column; the first packet sent or received is number 1, the next
number 2, and so on. There are also other forms of serial numbering contained within the packets themselves,
such as the IP identification field and TCP sequence number. pcapdiff uses the IP identification field (which
Wireshark refers to as ip.id for display filter purposes) to refer to packets, but this paragraph is merely discuss-
ing Wireshark packet ordinal numbers. “Packet no. 2340” in this sense need not have IP identification value
2340.

10 	 This reordering is not necessarily only due to ISP packet reordering, but also to the existence of network la-
tency; if both computers transmit a packet at noon over a network with a 1-second latency, each computer will
receive the other computer’s transmissions at 12:00:01 and consider its own transmission to have taken place
“first”.

14ELECTRONIC FRONTIER FOUNDATION EFF.ORG

2566, 2567). Evidently, many of the RST packets received by each machine did not actually
originate from the other.11 The result of these RST packets in this case was that the BitTorrent
session stopped and did not resume for around four and a half minutes. (A new TCP session
is established with the characteristic SYN and SYN/ACK packets at local capture packet nos.
2446 and 2447, which correspond to the remote capture’s packet nos. 2578 and 2579.)

Wireshark provides the ability to view not only a packet summary list like the lists displayed
above but also the sequence of bytes that comprise each individual packet, as well as a dissector
view which shows what the packet’s contents actually mean from the point of view of various
Internet protocol layers. A careful examination of this evidence could involve a byte-for-byte,
packet-for-packet comparison to determine exactly which packets were spoofed. If one is
performing such a comparison, it is important to appreciate that Wireshark captures more than
just the IP packets that get transmitted over the Internet; each IP packet is typically captured
wrapped inside a link-layer header (often referred to as an Ethernet frame header or Ethernet
packet header on an Ethernet-style network, including a wired Ethernet or wifi network). Link-
layer headers are used to communicate between computers on the same local Ethernet network
and are discarded and regenerated whenever a packet is forwarded through any router. Thus,
there is no reason to expect link-layer headers to correspond between two packet traces un-
less those packet traces were captured on the same physical local-area network. When manu-
ally performing a detailed packet comparison, packets should be considered “the same” if the
Internet Protocol headers and payload match up; the link-layer headers can simply be ignored
because they were never forwarded over the Internet.

Even some discrepancies between IP headers are to be expected; for example, the Time-To-Live
(TTL) field is supposed to be decremented by each router that forwards a packet, so the TTL
value when a packet is received should always be smaller than the original TTL value when it
was transmitted. Similarly, the IP checksum field that indicates whether a packet’s IP head-
ers were transmitted without error has to be recalculated each time the packet is forwarded,
because the TTL value has changed. There are also other circumstances in which an ISP’s
routers may, consistent with Internet protocol standards, legitimately alter other fields in the IP
headers. 12

On the modern Internet, there are usually several ISPs involved in forwarding packets from
their source to their destination. As a technical matter, any of these ISPs has the ability to
spoof (or drop) packets. Detecting the presence of spoofed packets, then, does not directly
reveal or conclusively establish which ISP was responsible for injecting them. To find out
which ISPs were involved in the process of forwarding packets from one computer to another,
one can use the traceroute tool or any of its descendants or variants. (On Unix and MacOS,
the command-line version of this tool is generally called traceroute; on Windows, it is known
as tracert.) This tool is run with a host name or IP address as its argument and experimen-
tally determines the path probably followed by probe packets, displaying a list of the routers in
between the local computer and target computer. In order to establish which ISP is respon-

11	 To compound the suspiciousness of this situation, each machine believed that it was not the first to send a
RST packet in this transaction – the local and remote machines each believed that the other party had initi-
ated the process of disconnecting the communication. It can be legitimate in the TCP protocol to send a
RST in response to a RST, and this trace suggests that each machine believed that that is what it was doing
– disconnecting only after the other end had already disconnected.

12	 We might compare this, albeit imprecisely, to the behavior of the post office in delivering a letter: the post office
may apply a postmark or print a bar code on the outside of the envelope, stamp delivery-related notations on it, or
even correct an erroneous postal code. However, the post office is not supposed to alter the contents of letters.

15ELECTRONIC FRONTIER FOUNDATION EFF.ORG

sible for packet spoofing, one could try experiments with a wide variety of ISPs in order to
determine if users of one ISP routinely or disproportionately experience that sort of spoofing;
one could also try to enable a virtual private network (VPN) to hide traffic from a local ISP,
although the details of this process are beyond the scope of this document.

Using pcap files

As we’ve described above, packet capture files produced by Wireshark and many other network
analyzer programs are normally in the pcap format (also known as libpcap format or tcpdump
format). This format is an open standard that is widely understood by network analysis soft-
ware. If you’re certain that a pcap file or set of pcap files you’ve made does not contain sensitive
personal information – recalling our earlier warning that it may, by default, contain a record of
all Internet activity your computer performed while the capture was active – you can consider
sharing pcap files with an ISP as part of a problem report or support request, or publishing
them on a blog or web site when documenting a problem you’ve experienced. These files are
concrete, useful evidence that can help technically knowledgeable people diagnose network
problems and confirm that a problem such as packet spoofing by an ISP is really occurring.

EFF is developing a tool called pcapdiff to help automate the process of comparing large pcap
trace files that were made simultaneously at each end of a connection. This automation makes
it easier to find packet spoofing or tampering when one doesn’t know what to look for ahead of
time and could make the comparison process less tedious (considering that many communica-
tions involve thousands of packets or more, and not all tampering will have results as obvious
as TCP RST injection). The pcapdiff program is a command-line utility written in Python
which requires exactly two pcap packet traces; it automatically compares them to find discrep-
ancies indicating dropped and spoofed packets. You can download pcapdiff from http://www.
eff.org/testyourisp/pcapdiff. Your computer must already have the Python interpreter in-
stalled; if not, you can obtain it from http://www.python.org/.

Currently, pcapdiff also requires the pcapy module from http://oss.coresecurity.com/projects/
pcapy.html in order to read pcap files; binary versions of this module are available for Windows
and Linux, but it must be compiled from source code for MacOS. Future versions of pcapdiff
may be able to run without pcapy.

pcapdiff is run from the command line; you must specify two pcap trace files and the local IP
address of the computer where each was captured. In addition to producing statistics about
overall rates of packet dropping and spoofing, pcapdiff will produce a list of the IP identifica-
tion field values of each such packet. This can help you locate packets of interest in a program
like Wireshark much more quickly. For example, if pcapdiff says that a packet with IP iden-
tification value 4321 was spoofed in the outbound direction, you can enter the display filter
ip.id eq 4321 into Wireshark’s display filter field and see only the packet (or packets)
with this particular IP identification value. Typically, IP identification values uniquely identify
IP packets transmitted by a particular computer, although these values will be repeated at least
every 65536 (216) packets.

Observing a very large number of forged packets may suggest that something is systematically
wrong – for example, you may have started or ended the captures at different times (so that one
machine has no record of having sent many of the packets that it did, in fact, send), you may
have limited the number of bytes captured per packet at one end but not at the other end, you
may have some kind of protocol offloading active on one end (so that one computer’s operat-
ing system is wrong about the contents of the packets that the network card actually sent over

http://www.eff.org/testyourisp/pcapdiff
http://www.eff.org/testyourisp/pcapdiff
http://www.python.org/
http://oss.coresecurity.com/projects/pcapy.html
http://oss.coresecurity.com/projects/pcapy.html

16ELECTRONIC FRONTIER FOUNDATION EFF.ORG

the wire), you might still have NAT or a firewall enabled at one end of the connection, or your
ISP might be forging or altering packets routinely, perhaps with a technique like transparent
HTTP proxying that is invisible to most application software. It is important to think criti-
cally about the significance of evidence and whether results are reproducible or attributable to
confounding factors. pcapdiff and the techniques described here are meant to help users find
anomalous discrepancies between packets sent and packets received, not to definitively assign
blame for the source of those anomalies.

Learning more about TCP/IP and interpreting network packet traces

For a deeper understanding of network protocols and packet traces like those described here,
you can consult the Internet standards documents that specify the TCP/IP protocol suite.
Most of these documents have been published in the RFC document series available at http://
www.rfc-editor.org/ and http://www.faqs.org/rfcs/. For example, the Internet Protocol (IP)
is described in RFC 791, the Transmission Control Protocol (TCP) in RFC 793, and the User
Datagram Protocol (UDP) in RFC 768.

An excellent guide to the TCP/IP protocol suite in book form is W. Richard Stevens, TCP/IP
Illustrated: Volume 1, The Protocols (Reading, MA: Addison-Wesley, 1994), ISBN 0201633469.
Stevens uses the tcpdump tool to produce packet traces on 1990s-era Internet-connected
networks, and carefully explains the theory and practice of Internet networking with reference
to these packet traces. Doing the same thing with Wireshark might be clearer today because
Wireshark has a friendlier interface and more extensive protocol dissection than tcpdump, but
Stevens’s explanations are clear, thorough, and generally valid for the Internet of today.

Acknowledgments
	 Thanks to Chris Palmer and Karl Fogel for their comments.

http://www.rfc-editor.org/
http://www.rfc-editor.org/
http://www.faqs.org/rfcs/

